Tanzania Meteorological Authority (TMA) Agrometeorological Database

Contents

1.	Background	1
2.	Public access to the database	2
3.	Controlled access to the database	3
4.	Mapping of agro-meteorological variables in the online database	4
	4.1 Visualization of a rainfall map	6
	4.2 Visualization of NDVI map	7
	4.3 Soil moisture mapping	8
	4.4 Wet and dry spells mapping	9
	4.5 Mapping of rainfall onset	.10
	4.6 Crop condition mapping using WRSI	.12
	4.7 Drought mapping	.12
5.	Time series Graphs	.13
6.	Viewing Forecasts and Agromet Bulletins	.17
7.	Viewing in-situ data	. 18
	7.1 Daily station data	. 19
	7.2 Station map and graphs	.21
	7.3 In-situ crop reports	. 22
	7.4 Crop condition map	.23
	7.5 Seasonal calendar reports	.24
	7.6 Crop yield and production statistics	.24
	7.7 FAMEWS Reports	.24
	7.8 FAMEWS map	.26
8.	Data entry	. 28
	8.1 Ten-day crop report	. 28
	8.2 Monthly crop report	.32
	8.3 Seasonal Calendar	.32
	8.4 Import FAMEWS data	.33
	8.5 Manual entry of station data records for all parameters	.33
	8.6 Single station data record entry	.34
	8.7 Importing data from Excel	.34
9.	Managing documents	.37
	9.1 Uploading documents	.37

9.2 Viewing available documents	
10. Crop yield modelling	40
10.1 Crop yield regressions	40
10.2 Estimating yield	41
11. Reference functions	44
11.1 Stations	44
11.2 Meteorological Parameters	45
11.3 Grid Type and Path	46
11.4 Crop stages	47
12. User administration	48
13. Conclusion	49
14. Glossary	51

1. Background

The Tanzania Meteorological Authority (TMA) Agrometeorological database provides a holistic tool that enables generation, analysis and pulling together of agrometeorological information from several different sources. The data sources include satellite data for different agrometeorological parameters, ground stations, and field reports. The platform was developed incorporating guidance and preferences obtained from a user requirements analysis undertaken with the technical experts at TMA and Food and Agriculture Organization (FAO) of the United Nations. This assisted the determination of the types of data stored and analysis necessary for specific information and products generation. Data can be entered manually, imported from Excel sheets, and automatically downloaded from satellite data sources. Further, data can be received and archived from manually operated stations into the database. Therefore, the database archives data and performs agrometeorological analysis on the archived data.

Agrometeorological products include information such as start of season, rainfall amounts, drought conditions, crop conditions, vegetation conditions, soil moisture, and crop yields. Due to availability of archival data (remotely sensed and in-situ observations), the database allows time series analysis of agrometeorological attributes. The agrometeorological database is designed to suit the needs of agricultural stakeholders (farmers, livestock keepers, fishers, extension officers, policy makers and decision makers), downloading and processing remote sense satellite data for soil moisture, rainfall estimates and vegetation indices from global data sources, generate tailor-made agrometeorological products and information, agrometeorological weather indices and downscaled agrometeorological products.

In addition to temporal analysis, the platform also allows spatial analysis of agrometeorological variables. The database allows visualization of maps and interactive retrieval of information at scales such as region and district in Tanzania. This allows comparison in space and time of the state of agrometeorological features. For each segment, a user can also plot graphics such as time series and comparison, for example, of a given dekad with same period in different years or with the long term mean. Therefore, the database has a user interface to display information analysed and generate downscaled agrometeorological products that meet user needs. This manual, therefore, provides the user with an overview of functions and products embedded in the database platform. Importantly, the manual also shows how users are given different privileges of accessing information at the discretion of TMA.

The TMA Agrometeorological Database was commissioned by TMA, FAO, United States Department of Agriculture (USDA) and Washington State University – International Development (WSUI-ID). TMA and MoA provided the station data, yield data and agrometeorological data reporting forms that were used to guide the customization of the database to their needs. TMA, MoA and FAO further provided guidance during the development of the database, with ongoing interactions and discussions. The Agrometeorological Database was developed by Tamuka Magadzire in consultation with Blessing Siwela. This manual was written by Tamuka Magadzire

and Terence Mushore, with contributions from TMA, Ministry of Agriculture and FAO. Oversight of the development of the database during the duration of this project was provided by TMA and FAO.

2. Public access to the database

The Agromet Database can be accessed by all users from the following web address:

http://agromet.meteo.go.tz/

Public users such as researchers outside TMA can access the database without entering any login credentials. Public users are however limited only to visualization of publicly available graphs and maps, forecasts, and agrometeorological bulletins. In this case, the users land on a page with links to latest available data for various agrometeorological parameters, as well as a thumbnail of the latest experimental Drought Hazard Map showing the season-to-date drought conditions, as estimated by a frequency-based approach. Authorized users can access additional functions such as crop modelling and entering and viewing of station data.

On the Drought Hazard Map, users have options to display drought information as a function of Normalized Difference Vegetation Index (NDVI), CHIRPS rainfall or the two combined (see illustration below). As the user hovers the cursor over a region, a value indicating percentage of drought affected area is shown under the "Drought Hazard" tab on the top right of the visualization section. The drought hazard map is explained in more detail in section 4.7.

3. Controlled access to the database

Access to additional functions of the database beyond visualization of maps and displaying of graphs requires logging-in with a username and password. The username and password are assigned by the administrator. The platform also provides privileges which differ between administrators and other users of the database. Access control allows TMA to specify who amongst their staff and stakeholders has the permissions to access and add data, to view station data, to upload bulletins and forecasts, and to model crop yields as well as to make necessary edits on the database. In order to access more data and functions, the user clicks on "Login" on the main menu bar and enters the registered credentials.

	Agrometeorological Database Maps - Graphs - Login Help TMA Home
Documents	Login
Agromet bulletins	
Folecasis	E-Mail Address
	Password
	C Remember Me
	Login Forgot Your Password?
povright 2020 Tanzania Meteorolog	ical Authority

The database provides authorized users with access to functions which include data entry, plotting of graphs, maps of agro-meteorological attributes as well as crop models and document management. Upon signing in, the menu is expanded to display additional functions that the user will have access to. Clicking on menu items with a downward pointing arrow reveals sub-menus with more functions

4. Mapping of agro-meteorological variables in the online database

Under the Maps function there is a list of variables that can be mapped at user specified periods. The list appears when the "Maps" button on the far left of the menu is clicked, which allows selection of data for mapping. The variables currently accessible are rainfall, NDVI, soil moisture, dry and wet spell, rainfall onset and WRSI. Once a variable is selected the values are automatically mapped and visualized in the Grid WMS Viewer as shown below.

1	Agrom	eteorological Database	
CTM	Maps -	Ingina + Logen Heija TMA Home	
Documents	Rainfall D	h abase Home	
Forecasts	Soil Moisture Dry and Wet spells	Welcome to the TMA Agron	neteorological Database Home
	Rainfall Onset	dekadal rainfall data	Experimental Drought Hazard Map
	Drought Hazard		Combined - Nov-Apr - 2020 - Nov-2 -
	View the lates	t seasonal rainfall data	+ Drought Hazard
	View the lates	t vegetation data	- Shall
	View the lates	t onset of rains data	APPER S.
	View the lates	t rainfall and NDVI graphs	and the

Grid database								
Dataset:								
eMODISNDVI	~							
Year:								
2020	~							
Month:								
January	~							
Dekad:								
1	~							
Value type:								
actual	~							
Reload								
Dataset: Grid Opacity:								

On the left of the viewer is a taskbar with additional options on visualization of the data. These options differ according to the agrometeorological parameter being viewed, but include selection of dataset to be visualized, the year, month and dekad to be considered as well as the value type with options accessed by clicking a drop down arrow on the right of the attribute. Once the parameters have been selected, the user can click the Reload button to update the map to show the selected parameters. Opacity can be adjusted by sliding to the left or the right the bar found at the bottom of this taskbar. Reducing opacity enables the user to view the underlying features and thereby provides context to the area on the map.

After making change/s to the display option they can only be effected in the Grid Viewer after clicking the "Reload" button.

The map that is being viewed can be saved as a png graphic by clicking on the downloaded buttons on the top left or the bottom right. The raster data can also be

saved as a georeferenced geotiff that can be used in a GIS package for further analysis, by clicking on the button on the bottom left.

Station names can be displayed by hovering over the layer control widget on the top right of the map to expand it, then clicking on station names.

4.1 Visualization of a rainfall map

The Agromet Database has a combination of dekadal CHIRPS and CHIRPS Prelim rainfall data for mapping, with further options of selecting a specific year, month and dekad to view. Dekadal CHIRPS rainfall totals, percent of average, difference from average and z-score are calculated and updated on a dekadal time-step, from 1981 to present. In the Viewer, actual (rainfall totals), difference from average or percent of average can be chosen as mode of presentation. Pressing the "Reload" button will apply all the selected preferences for displaying the data.

Additionally, the user can choose the "View seasonal rainfall" option, which allows season-to-date rainfall totals to be displayed for any date from the start of the selected season to date. The seasonal data can be also be displayed as totals, difference from average, percent of average and z-score. Users can select from one of 3 seasons: November-to-April, March-to-May and October-to-December.

Seasonal accumulation of rainfall for NDJFMA season from 1 November 2018 to 2 March 2019, expressed as z-score

From the seasonal rainfall option, users can choose to return to dekadal data by clicking the "View Dekadal Rainfall" button.

4.2 Visualization of NDVI map

The user can select Dekadal NDVI (based on eMODIS NDVI), percent of median, and difference from median. The NDVI map can be presented for a given year, month and dekad according to user preferences, which can be selected from the panel on the left side of the screen. NDVI data is available from 2003 to present

Dekadal NDVI for Dekad 3 of January 2020

Dekadal Percent of median NDVI for Dekad 3 of January 2020

4.3 Soil moisture mapping

Monthly soil moisture in the top 100 cm of the soil profile, obtained from the FEWS NET Land Data Assimilation System (FLDAS) Noah Land Surface Model is available for visualization in the Agromet Database for the period 1982 to present. Soil moisture values can be presented as actual, or difference from average, depending on user selection

Monthly soil moisture anomaly (difference from average) for December 2019

4.4 Wet and dry spells mapping

The Agromet Database shows the highest number of continuous dry days (dry spell) or continuous rain days (wet spell) in a month. The data is available for the period 2001 to present. A rain day was defined in 2 different ways as either (i) at least 1 mm of rainfall or (ii) at least 5 mm of rainfall. The same threshold options were used to define a dry day: (i) less than 1 mm of rainfall or (ii) less than 5 mm of rainfall) with the user choosing from a drop down list. Therefore maps for Length (in days) of dry spells and wet spells for two different definitions of dry/wet day, based on these definitions for rain and dry day can be visualized on the platform. The data are currently available at monthly temporal resolution. The Wet and Dry spell values can be displayed as "actual" or "difference" (difference from normal)

Maximum dry spell length for March 2019

Maximum wet spell anomaly (difference from average) for March 2020

4.5 Mapping of rainfall onset

Rainfall onset was defined as the first day of which at least 25 mm of rainfall was received over a 4 day period with at least 2 rainy days. A rainy day was defined by 2 different options as stated above. In order to separate onsets from false starts, an additional optional condition was applied: after receiving 25 mm over a four day period, there should be no dry spell of 10 days or more over the ensuing 30 day period. Users therefore have the option of selecting onset as defined by any of these four conditions. Selectable parameters include, the season, dry day definition, year and value type (actual or difference from average) with options for each as indicated below. Data is available for the period 2001 to present.

MAM Onset of rains as of Dekad 3 of May 2019

MAM Onset of rains anomaly (difference from median) as of Dekad 3 of May 2019

4.6 Crop condition mapping using WRSI

The platform also includes multi-dekadal monitoring of crop condition based on water requirement satisfaction index (WRSI). This compares the disparity between water available to the crop, (modelled using rainfall and evapotranspiration), and crop water requirements per phenological stage. This can be mapped using actual values or as an anomaly. The WRSI grids are available for the period 1981 to present.

WRSI for the NDJFMA season for Dekad 3 of February 2018

4.7 Drought mapping

Drought severity is estimated using a frequency analysis approach.. In this definition, drought is defined as those areas in which the agrometeorological parameter under analysis is within the 20th percentile of the historical record. The US Drought Monitor uses a similar approach utilizing the 20th percentile as a preliminary indicator of drought, although they confirm the drought conditions using ground observations of impacts and user interpretation and intervention before delineating the drought conditions. In the Agromet Database, preliminary drought conditions can be mapped using NDVI, Rainfall or a combination of the two based on user preferences. The maps displayed show the percentage of each region that has experienced cumulative rainfall or NDVI (from the start of the season) under the 20th percentile. Three sub-seasons are considered, namely November to April (Msimu), March to May (Masika) and October to December (Vuli). The user can analyse the drought extent for a dekad of interest (see illustration below). For a given spatial demarcation (region or district) the legend presents the percentage of the total area recording at least a moderate drought. Experimental drought hazard maps are available from 2001 to present. In addition to the experimental drought hazard map automatically generated, users can also view a consensus, expert-analysed drought map by clicking on the "Latest Consensus Drought Map button at the top left of the interface. This links to a pdf map

document that will have been generated and posted by TMA after analysis of the drought indicators and impacts. The process for uploading the consensus drought map is described in chapter 9.

The percentage of the region/district experiencing at least a moderate drought can also be read by moving the cursor over as illustrated below. The values will change as the cursor is moved to different locations around the map.

5. Time series Graphs

Graphing is possible with regions, districts and station data, showing the progression in the value of a specified parameter over the course of a season. Users can display several selected years including the current year to allow for comparison, as well as show the long term mean. Currently, the facility provides options to plot per region as well as per district spatial scales. These options appear upon clicking of a drop down menu on the "Graphs" menu item as shown below.

After selecting the spatial demarcation at which to derive the plots, a "Zonal Statistics Chart" Viewer appears for interactive selection of location whose data to plot graph/s from (as shown below). The dataset section on the left of the "Zonal Statistics Chart" Viewer allows selection of agrometeorological parameter from a list which includes rainfall and NDVI. Only one agrometeorological variable can be selected for graph plotting at a time.

For a given variable it is possible to plot graphs for different years at once by selected all the years to be considered from a list as shown below. Note that for periods that cross years (e.g. July 2019 to June 2020), the "year" referred to is the year that time period of interest starts (so "2019" for example refers to the 2019/2020 season). The graph will appear on a window below the "Zonal Statistics Charts" Viewer immediately after clicking the "Reload graph" button once all desired data options are selected. The facility provides options of saving the plotted graph as image and the data used as CSV. The user also chooses whether to plot long term averages along with the current data, and can choose whether to plot the values as dekadal or cumulative values.

Data can also be displayed as bar graphs by selecting the "graph type". Reload the graph after making any changes,

Graphs can be displayed as cumulative graphs by clicking the "cumulative" option on the right. The graph below shows the plot for Lindi, with well above average rainfall for the 2019/2020 season.

The graphs can be saved as either CSV or a graphic, using the buttons above the chart. Both files are saved according to the download settings on the user's browser, typically in the download folder, unless this has been changed by the user.

The graphic is saved as a png file, with the filename root "ChartImage*.png". An example that was saved for Lindi is shown below.

The csv file is saved with all the data used to produce the graph. It can be opened in Excel or other spreadsheet program. The filename for the csv file will contain the Region or District name, and the data type. For the example shown above, the

filename is *Lindi_cumulative_CHIRPS Rainfall_chart-data.csv*. The csv data will appear like the one shown below when opened in Excel:

	Α	В	С	D	E	F	G	Н	Ι	J
1	Lindi	1-Jul	2-Jul	3-Jul	1-Aug	2-Aug	3-Aug	1-Sep	2-Sep	3-S€
2	2018	3.110066	5.543744	8.028222	9.980715	11.85136	15.19614	18.00282	20.93791	25.197(
3	2019	2.44873	4.789276	7.176858	9.518815	11.35513	14.0936	16.04892	18.28692	21.4586
4	LTA	2.726765	5.021589	7.594628	9.763924	11.73732	14.40696	16.41413	18.8182	22.1998

6. Viewing Forecasts and Agromet Bulletins

Internet users can view agrometeorological bulletins and forecasts in pdf format directly from the Agromet Database interface, using links in the top-left corner of the screen.

Clicking on the Agromet bulletins link reveals three types of agromet bulletins.

Clicking on any of the links to the bulletins will take the user to the latest version of that bulletin, which will be displayed in the browser. The user can click the download icon to download the report for offline viewing

There are five different forecast documents available for viewing from the Agromet Database.

Clicking on any of the links to the forecasts will take the user to the latest version of that forecast, which will be displayed in the browser. The user can click the download icon to download the forecast for offline viewing

7. Viewing in-situ data

The View Data entry menu item is available to users logged in as viewers, editors or administrators. There are two types of data available, namely meteorological data and agricultural data. The meteorological data is viewable by users with meteorology viewing roles, while the agriculture data is viewable by users agriculture viewing roles. Roles are assigned by the administrator as described in section 12 of this manual.

The View Data menu is accessed under the *In-situ Data > View Data* menu.

This show a menu of 8 different buttons that the user can use to view data, depending on their administrator-assigned roles.

/iew In-Situ Data	
Daily Station Data	Station map and graphs
In-situ Crop Reports	Crop Condition Map
Seasonal calendar reports	Crop Yield and Production Statistics
FAMEWS Reports	FAMEWS Map

7.1 Daily station data

Selecting the daily station data button will present the user with a list of all the different agrometeorological stations and station data parameters available in the database. Each parameter abbreviation is clickable.

Dai	ily s	sta	ati	0	n	da	at	а						
Arusha	AR 1	MAX	TMN	THE .	EVAP	PET	sis	WR	RADIR	GSS	CROP STG	DRY	WET	S/TEMP000
Buikoba	AR T	MAX	TMN	RH	EVAP	PET	5/5	WIR	RADIR	GSS	CROP STG	DRY	WET	S/TEMP000
Dodoma	AR T	MAX	TMP	RH	EVAP	PET	5/5	WHR	RADIR	GSS	CROP STG	DRY	WET	S/TEMP000
Hombulo	A/H T	XAX	TMN	RH	EWAP	PET	5/5	Witt	RADIR	GSS	CROP STG	DRV	WET	S/TEMPB00
lgeri	AR T	мах	TMIN	F PH	EVAP.	PET	5/5	WH	RADIR	655	CROP STG	DBY	WET	S/TEMP000

The full list of station data parameters available in the database by default, and their acronyms are as follows:

Parameter name	Parameter abbreviation
Observed rainfall	A/R
Maximum temperature	TMAX
Minimum temperature	TMIN
Relative humidity	RH
Evaporation	EVAP
Potential evapotranspiration	PET
Sunshine (hours)	S/S
Wind run	W/R
Solar radiation	RADIR
Grass minimum temperature	GSS
Crop stage	CROP STG
Dry bulb temperature	DRY
Wet bulb temperature	WET
Soil temperature (Surface)	S/TEMP000
Soil temperature from 5cm to 100cm depth	S/TEMP005 to S/TEMP100
Soil moisture (Surface)	S/M 000
Soil moisture from 5cm to 100cm depth	S/M 005 to S/TM 100

Clicking on a specific parameter for a particular station will show all the data available for that parameter and station. Only 10 records are shown on each page. The page buttons at the bottom of the page can be used to navigate between the different records.

Arusha Daily A/R data

From: dd/m	miyyyy	to: dd/inm/yyyy	South		
Station	parameter	Data date	Data time	Data value	Actions
Vrustra	AR	2020-04-05	0600Z		
Srusha	AR	2020-04-06	06002	0	
Arusha	AR	2029-04-07	0000Z	0	
Arushia	AR	2020-04-04	0600Z	10	
Anasha	AR	2020-04-03	06002	9	
krusha	AR	2020-04-08	0600Z	119	
4sisba	AR	2020-04-00	0600Z	16	
Arusha	A/R	2020-04-10	00002	6.2	
Vriestin	AR	2020-04-11	0600Z	3.5	
kusha	AR	2020-04-12	0600Z	0.4	

Using the search facility at the top of the page, the user can filter out data for a specific range of dates.

From: 21/0	1/2020 0	To: 25/04/2020 @	Search		
itation	parameter	Data date	Data time	Data value	Actions
rusha	A/R	2020-04-21	0600Z	14.8	Opening dailystationdata.xlsx
nusha	A/R	2020-04-22	0600Z	21.3	You have chosen to open: adultystationdata.xlsx
vrusha	A/R	2020-04-23	0600Z	67.7	which is: Microsoft Excel Worksheet (6.3 KB) from: http://localhost
nusha	A/R	2020-04-24	0600Z	1.2	What should Firefox do with this file?
rusha	A/R	2020-04-25	0600Z	31.4	Grave File Do the supportingly for File like the from results

Users can also export data into Excel format using the Export button at the bottom of the page. The dates to be exported need to be specified and visible in the Search section before clicking the "Export" button. The Export feature allows for sharing of selected data with researchers and other collaborators.

7.2 Station map and graphs

In addition to viewing data in a tabular format, Users can opt to view the locations of the stations on a map as well as graph the available data. Hover over a station to show the name and coordinates of the station.

After specifying the parameter of interest, the dates to view, and the time of observation, the user can click on any of the stations to view the graph for the specified period and parameter. The available data for will be displayed as a pop-up graph in front of the map. The graph can be downloaded as a graphic or a csv file by clicking the blue buttons above the graph. Click the Close button on the graph, or anywhere outside the graph, to return to the main stations window.

7.3 In-situ crop reports

All available data for in situ crop reports can be viewed by clicking on the In-situ crop reports menu. The full crop report including additional details can be viewed by clicking on the "Details" button to the right of each record.

							Detailed Crop Report	
Crop	o repo	orts					Region	Arusha
Cog	-beat-		Падкот	-549x1-	3 Statum	-54447- 3	Station	Kigoma
Start date			Erel dete:				Observation Date	2020-10-10
Region	Station	Observation data	Crop	Crop Stage	Crap Condition	Actions	Observer	Tamaka
Anute	Higoto	2020-30-30	Beam	roeness	Excellent state	Dense	Crop	Beans
Arysha	Anaha	2020-06-29	Dorn	amergence	Moderate state	Deter	Crop Stage	tipeness
Austra	Rigoina	2020-09-21	Beam	-Bouwering	Modecate state	Datasa	Crop State	Excellent state
Dodotin	Rukoba	2020-10-02	Maize	rands load	Urnatulationy	Datara	Number of plants per acre	
					same		Number of stems per sigm	
trige	Dogami	3950-30-00	Mistre	location	Modernie takk	Deten	Plant height	
Arvana	Anaha	2020-10-01	Matro	anargence	Barl state	Details	Meteorological phenomena	
Katavi	Handelo	2020-10-04	Malzo	Rosering of the texts	Good state	Detare	Meteorological phenominia dale	

The user can opt to view data only for selected crops, regions, stations and/or dates using the search panel.

Crop: B	eans -	Region:	-Se	iect	Station:	~Select~
Start date: 20	020-10-01	End date:	2020)-10-31		
Region	Station	Observation date	Crop	Crop Stage	Crop Condition	Actions
Arusha	Kigoma	2020-10-10	Beans	ripeness	Excellent state	
Arusha	Bukoba	2020-10-19	Beans	emergence	Unsatisfactory state	
Dodoma	Kibaha	2020-10-09	Beans	ripeness	Good state	
Kaskazini Pemba	tringa	2020-10-07	Beans	budding	Unsatisfactory state	
Kigoma	JNIA	2020-10-08	Beans	budding	Moderate state	
Kigoma	llonga	2020-10-06	Beans	emergence	Bad state	
Tanga	Tanga	2020-10-20	Beans	emergence	Good state	

The selected data can be exported into Excel format using the button at the bottom of the page.

7.4 Crop condition map

All available crop condition data can be mapped using the Crop condition map button. Use the search tools at the top of the map page to specify the date and crop to map. Only one dekad at a time can be mapped. Hover over the station to show the details of the crop type and crop state.

7.5 Seasonal calendar reports

The seasonal calendar reports give the date of onset and cessation of rainfall as recorded by observers at different stations.

			Season	al Calenda	ar Reports	
promet bulletins promet bulletins						
	District	Station	Observer	Onset Date	Cessation Date	Length of seasons
	Arusha	Arusha	John	2020-03-02	2020-05-25	84 days
	Dodoma	Dodoma	Mary	2019-11-12	2020-04-17	157 days

7.6 Crop yield and production statistics

The crop yield statistics data can be viewed in tabular format as shown below. Use the page buttons on the top right to navigate different records.

Documents Agromet bulletins	Crop Sta	tistics						
Forecasts	New crop pro	duction data						
	Per page	10		÷	- 6	1	2 3	
	Region	¢ Crop	Year	Yield	¢	Actions		
	Arusha	Maize	2001	1.2		info modal	Edit record	
	Arusha	Maize	2002	0,9		Info modal	Edit record	
	Arusha	Maize	2003	1,2		Info modal	Edit record	
	Arusha	Maize	2004	1.2		Info modal	Edit record	
	Arusha	Maize	2005	1.2		tnfo modal	Edit record	
	Arusha	Maize	2006	1,1		info modal	Edit record	
	Arusha	Maize	2007	1.1		Info modal	Edit record	
	Arusha	Maize	2008	0.4		Info modal	Edit record	
	Arusha	Maize	2009	1.3		Info modal	Edit record	1
	Arusha	Maize	2010	1.2		Info modal	Edit record	

7.7 FAMEWS Reports

FAMEWS is an FAO-supported global resource that facilitates the sharing of data collected on the prevalence of Fall Armyworm (FAW). The data is collected by volunteers using a smartphone app, and the data is sent to a centralized server.

FAO has kindly offered to supply period updates on FAMEWS data over Tanzania, as new data becomes available.

In addition to data on FAW prevalence, the FAMEWS data also provides data on crop condition and crop stage, which is important for crop monitoring.

The FAMEWS data can be viewed by clicking on the FAMEWS Reports button accessible on the main View Data interface.

The following data will be shown on a table: Date, Region, Main Crop, Crop Stage, Crop Health and FAW Prevalence. The search function to be used to display data for a specific period, crop and region.

From: 01/01/2	To: 31/07/2019	Crop: maize	Reg	ion:]	Search	
Date	Region	Main Crop	Crop Stage	Crop Health	FAW Prevalence (%)	Action
2019-01-02	Iringa	maize	seedling	medium	14.00	Details
2019-01-05	Iringa	maize	seedling	medium	18.00	Details
2019-01-07	Zanzibar Urban/West	maize	seedling	medium	52.00	Details
2019-01-07	Zanzibar Central/South	maize	vegetative	good	62.00	Details
2019-01-08	Zanzibar North	maize	vegetative	poor	58.00	Details
2019-01-08	Zanzibar North	maize	vegetative	poor	40.00	Details
2019-01-09	Iringa	maize	vegetative	medium	24.00	Details
					10.00	1

The selected data can be exported to Excel format by clicking the "Export" button at the bottom of the page.

Additional details can be viewed by clicking the "Details" button on the right of each data entry.

Detailed FAMEWS Report	
Parameter	Value
Date	2019-01-02
Crop Field Size Unit	acre
Location Name	sadani
Crop Variety	614
Crop Planting Date	11/11/2018 10:00:00 PM
Latitude	-7.9175
Longitude	35.53333
Main Crop	maize
Irrigation	rainFed
Fertilizer	yes
Crop Stage	seedling
Crop Health	medium
Crop System	seasonal
Crop Rotation	unknown

7.8 FAMEWS map

In addition to viewing the FAMEWS data in tabular format, the FAMEWS data can also be displayed as a map, by clicking on the "FAMEWS Map" button. This will present a map as shown below. The map shows FAMEWS observation locations, and is colour-coded such that lower FAW prevalence is dark green and high prevalence is orange and red.

Users can zoom in and out of the map as appropriate. Hovering over the observation point will show additional details.

The FAMEWS Map can be filtered using the search function to select points to display only for selected crops or date range.

8. Data entry

The Data entry menu item is only available to users logged in as editors or administrators. It facilitates the entry of station data for meteorological and agrometeorological stations. It should be noted that although the AgrometDB allows the handling of station data, at present it is not intended as a comprehensive climate data management system (CDMS), due to the short time frame in which the database was developed. Its main function is to handle data already collated, quality-controlled and managed by existing processes and CDMS, with the main aim of facilitating agrometeorological analyses.

Upon clicking on "In-situ data > Data entry" on the main menu, the following options for entering data will appear as shown below.

Data Entry forms and Imports

Clicking on each of the options will provide a platform for entering the data. The first four options allow manual entry of crop observation data and meteorological station data, while the fifth option, "Import Monthly Station Data" option allows uploading of station data saved in Excel format.

8.1 Ten-day crop report

The Ten-day crop report allows crop data observed at agrometeorological stations to be recorded into the database. As the database is available online, the observers can enter the data directly from the station if internet access is available, or the data can be sent to TMA HQ, and then entered by an authorized user.

The first section of the form specifies the district, and the station that the data is relevant for, the name of the observer, and the date the observations were made.

ТМА	Agrometeorolo Maps = Graphs = (igical Database Inte Entry Coop models	Refirences = Admin =	Agromet Admin =
Adc	l a crop	report		
District:	strict •	Station: Select station •	Observer:	
Observation d	ate:			

The second part of the form deals with the crop type, the crop stage, and the crop condition. The crop stages presented are dependent on the crop type selected. For example, if the user specifies the crop being observed as Maize, the crop stages presented will be different than if the user selects Rice, as shown in the illustrations below

		Crop:	Crop stage:
Crop:	Crop stage:	Rice	····· ¥
Maize ~	emergence ninth leaf tasseling flowering of the tassle wax ripeness	Number of plants per acre	emergence third leaf tillering shooting tassoling flowering wax ripeness

The general assessment refers to the state of the crop. The user has 5 options to choose from, as described below:

Crop:	Crop stage:	General assessment:
Rice 🗸	····· ·	Select assessment 🗸
Number of plants per acre:	Number of stems pe	Select assessment 1 - Bad state 2 - Unsatisfactory state
		4 - Good state 5 - Excellent state

The full explanation for what each state means are presented in the table below:

Degrees of assessment	General State of the plants in field	Description of the state of the crop
1	Bad state	Plants are weak and in bad condition. A plant suffer from a very bad meteorological conditions, or are damages from adverse meteorological phenomena, pests or diseases. A very poor crop yield to be expected.
2	Unsatisfactory state	Plant density in the field is not sufficient due to unfavorable meteorological conditions or any other adverse factors. There is considerable amount of weeds. A yield below the normal expected.
3	Moderate state	Condition of the plants, density of the sowing area, amount of weeds, damages from adverse meteorological phenomena, pests or diseases, are as usual, and therefore a normal crop yield is to be expected.
4	Good state	Some plants are not very healthy or strong; there are some weeds; small damages from adverse meteorological phenomena, pests or diseases. However, the expected yield from such crops is still above the average for the area
5	Excellent state	The plants are strong, healthy, well rooted and developed. All parts of the plants and especially reproductive ones are in excellent condition. There are no weeds. It is typical for years with very good meteorological conditions, and a yield much higher than in normal years is to be expected.

The remainder of the form allows for entry of information on the plant population and height, details about meteorological phenomena that have adversely affected crop conditions, pests and disease incidence, weeds, harvesting, and yield estimate.

The options for meteorological phenomenon are dry spell, drought, hail storm, flood and strong winds.

Number of plants per acre: N	lumber of stems per sqm:	Plant height (cm):	
Met phenomena:	phenomena date:	phenomena duration:	phenomena damage:
Select phenomena	•		
phenomena damage %:			
Name of pest or disease: P	est or disease damage dat	e: Pests or disease damage kind	d:
Pest/disease extent of damag	e %:		
Weeds spreading percent %:	Harvesting date:	Yield:	
Notes:			

Submit

The user should click the "Submit" button after filling in all the details.

8.2 Monthly crop report

The monthly crop report is ideally entered once a month. The difference with the tendaily crop report includes information on the name of the field where the observations are taking place, the crop variety (in addition to crop type), the sowing date, a breakdown of the percentage of crops at different stages of phenology, and the field work being carried out in the field.

Field:		Crop:		Variety:		Sowing da	ite:
		Select	crop 👻				
Year:	Month:						
2019 👻	January	*					
Number of I	Plants with the	e Feature of the	e given Phase				
rop stage:		1:	2:	3:	4:	Total:	Number of plants percentage:
		•					
Field work (carried out on	the same field	F				
1:							
2:							
з:							
4:							
lotes:							
Submit							

8.3 Seasonal Calendar

After clicking on the Enter Seasonal Calendar button, the user is presented with a screen showing all the available data, as well as an "Add Entry" button.

		Seaso	onal Calen	dar Reports	
					Add Entry
District	Station	Observer	Onset Date	Cessation Date	Length of seasons
Arusha	Arusha	John	2020-03-02	2020-05-25	84 days
			12232-030323	0222202222	122010000

Click on the Add Entry button to start adding new data: The data that needs to be entered is data the names of the region and the station where data is being observed, the onset of rains date, and the cessation of rains date. The length of season is then calculated automatically by subtracting the cessation data from the onset date.

2	Seasonal Calendar En	itry
Region: Select Region •	Station: Select Station	Observer:
Dnset date: dd / mm / yyyy		Cessation date: dd / mm / yyyy
	Submit	

8.4 Import FAMEWS data

FAMEWS data is sent to TMA from FAO as an Excel file in a pre-determined format. The data can be imported by clicking the "Import FAMEWS data" on the main data entry interface, then clicking the Browse button on the following screen to select the FAMEWS Excel file, and clicking the "Import" button once the file has been selected.

Show r	ecore

8.5 Manual entry of station data records for all parameters

For agrometeorological stations where multiple agrometeorological parameters are observed, the user can manually enter the value of each parameter that was observed. Parameters that were not observed can be left blank. After a user selects a station, date and time, any observations already recorded in the database will be shown on the screen, in order to show the user that there are already values in the system. Missing values should be left blank. After data entry is complete, the user should click "Save Records".

Choose a station		Grass Minimum Temperature (deg)	GS5
Choose a date	No date selected		
Choose time slot	•	Soil Temperature (deg)	SOILTEMP
Observed Rainfall (mm)	A/R	Soil Moisture (mm)	S/M
Maximum Temperature (deg)	TMAX	Crop Stage ()	CROP STG
Minimum Temperature (deg)	TIMIN	Relative humidity (%)	RH
Evaporation (mm)	EVAP	Dry ()	DRY
Potential Evapotranspiration (mm)	PET	Wet ()	WET
Sunshine (hours)	S/S	Wind run [2m] (km)	W/R2
Radiation ()	RADIR	Save Records	

8.6 Single station data record entry

For instances where the user only wants to enter data for a single parameter, the single data record entry can also be used. This simplifies the interface, and allows the user to focus on that one parameter of interest.

For example, clicking on "Enter single station record" will give the form below

Station:	12200 Az 100 (AL 1007) (2823)
Arusha	Station selected here from a
Parameter:	drop down list
Observed Rainfall	- Weather parameter is selected
Data date:	here from a drop down list
Data time:	
Data value:	
Notes:	Data value is entered here
Submit Conce all information has been filled in, it is entered into database by clicking the "Submit" button	

8.7 Importing data from Excel

In cases where the monthly data has already been entered into Excel, the data can be imported directly into the database using the import facility. The data has to be in a specific format for the import to work properly. The following format is required, based on a sample provided by TMA. The following should be adhered to:

• Cell B1: Station name

- Cell B3: Data type (Daily)
- Cell D3: Month/Year
- Cell B4: Time (0600Z)
- Cell O4: Time (1200Z)
- Row 5: Parameter headings, in the order shown below
- Cell A5 to A36: dates from 1 to 31
- Missing values should be denoted by xx

Failure to adhere to this format can result in import failure.

	A .	В	¢	D	E	E	G	H	1	1	×.	1	M	.14	0	<i>p</i>	Q	Æ
1	Station name	ILONGA																
4	Data type:	Daily		Month	Year: JANL	JARY-201	5											
4		0600Z													1200Z			
.5	DATE	A/R	TMAX	TMIN	AH	EVAP	\$/\$	W/R	RADIR	GSS	SOIL TEN	S/M	CROP STG		DRY	WET	RH	SOIL TEM
-	1	10.1	29.5	100	91	3.3	2.2	2.5	9 xx	AX.	20.6				23.9	19.9	71	22.3
2	2	30.7	26.6	SR.	89	3.7	6.2	2.7	7 XX	XX	22.6				20.4	17.2	76	23.7
11	3	12.4	29.1	XX	91	4	6	1	1 XX	XX	22.3	÷			25.7	18.5	64	24
9	4	25.4	21.3	xa.	97	0.9	4.5	1.8	B KX	XX	22.8				24,2	17.9	57	23.7
10	5	38.4	23.3	NX	85	3.4	6.4	2.8	S XX	XX	21.9	6			23.4	16	50	22.5
11	6	2,6	27.2	NH:	97	4.8	6.8	2.3	2 101	108.	22				22.3	20.1	82	22.2
12	7	6,4	22	xx	82	5.7	2.5	1.5	5 XX	XX	20.1				21.9	16.2	61	23.2
-13		0.8	28.7	XX.	85	2.6	1.1	0.4	4 poi	IOX .	22.4	1			21.2	16.4	66	23.4
14	9	13.6	28.1	KR.	98	2.9	6.5	2.6	5 xx	88	21.8				21.2	18.7	77	23.9

Once the Excel data is confirmed to be in the correct format, the data should be imported as shown below

A file containing station data is upload by dragging from the
source and dropping in the "Drop Here" area
Or Uploading by clicking "Choose File" and browsing to the
source folder
Details of the station are
C entered here
lue

After importing, the user is given an overview of which data were successfully imported, and which records failed to import.

Agrometeorological Database

s * Graphs * Data Entry Crop models References * Admin * Agromet Admin

Import daily station records from Excel

Station MBIM	BA						
(ear 2020							
Month 01							
laved records				Failed records			
Parameter	Date	Time	Value	Parameter	Date	Time	Value
A/R	2020-01-01	0600Z	10.6	W/R	2020- 01-01	0600Z	1.24291666666667
TMAX	2020-01-01	0600Z	24.6	W/R	2020-	0600Z	1.86833333333333
TMIN	2020-01-01	0600Z	ж		01-02		
RH	2020-01-01	0600Z	79	W/R	2020- 01-03	0600Z	1.35375

9. Managing documents

The TMA Agromet Database can handle Agromet Bulletins and Forecast documents (in pdf format) that web users can read directly from the website. The management of these documents is done from the Documents Management module. Authorized users can upload and delete documents, as well as list all the documents available in the system.

There are two different user roles for managing documents:

- 1. Agromet authors, who can upload, list and delete agromet bulletins
- 2. Forecast authors, who can upload, list and delete forecast documents.

9.1 Uploading documents

To upload a document, click the *Manage documents* menu, then click the *Upload documents* sub-menu item.

Select the type of document to be uploaded. For this example, a Dekadal weather review and outlook will be uploaded, by clicking on the *Dekadal weather review and outlook* button.

In the screen that pops up, specify the date that for which the document being uploaded is valid. Then click the Browse button and select the file to upload. A description of the document can optionally be added in the "Description" section if required. Then click the "Add document" button.

ETM	Agrometeo Maps - Graph	[×] Add Dekadal Weather Review & Outlook
Documents Agromet bulletins Forecasts	Upload Docun 24 hours Weatt	Date 2020 • November • 11-20 • Document
	Dekadal Weather R	Browse TMA-Agrometeorologica 21 21-end
	Seasonal Wea	Description
	Five days Weat	
	Monthly Weath	Add document

When the document has been successfully uploaded into the system, a message confirming success is displayed.

Стм	Agrometeorological Database
Documents Agromet bulletins	Upload Documents
Forecasts	24 hours Weather Forecast
	Dekadal Weather Review & Outlook

9.2 Viewing available documents

To view available documents, click the *Manage documents* menu, then click the *View documents* sub-menu item

Select the type of documents to be viewed. For this example, the 24-hour weather forecasts will be viewed by clicking on the 24-hour weather forecasts button.

A list of all the available documents of the specified type will be displayed in a table. Click on the name of the document to view the document, or click on the "Delete" button next to the name of the document in order to delete the document from the system.

Agrometeorol	ogical Database	
Maps · Grophs ·		nin - agrometadmin - Help
24 hours Weather Forecast		
Name	Date	Actions
24 hours Weather Forecast for 30 November 2020	2020-11-30	Delete
24 hours Weather Forecast for 22 October 2020	2020-10-22	Delete
24 hours Weather Forecast for 04 October 2020	2020-10-04	Delete
24 hours Weather Forecast for 01 January 1900	1900-01-01	Delete

© Copyright 2020 Tanzania Meteorological Authority

10. Crop yield modelling

The "Crop modelling" tab links the user with crop "Yield Regression" and "Yield Estimation" functions. Yield modelling is based on a set of regression equations per location and per crop type. The yield models that are in the database upon delivery of the database were developed using linear regression between crop yields and WRSI for the 2001 to 2010 period.

10.1 Crop yield regressions

Clicking on Crop yield regressions takes the user to a window which shows details of regression equations including intercept and slope, correlation coefficient, data period considered, crop and region (see illustration below), and allows new yield regression models to be entered based on analysis that has been done externally.

Crop Yi	ield	Mo	dels												
New Yield	Regres	sion													
	Sort	- no	ne		Are: 1	0		Initial sort	40C						٠
	Filter	Туре	to Search			Oerr		Filter On	C Reg	gion err	C crop	D ps	value (🗋 rvalue	
Pe	r page	5					1 (A)	14	1	2	3	4	1 1	1.00	
Region	¢ Cr	гор	0 Dataset				φ.	Actions							
Arusha	М	alze	wrsi_chirp	osgdas_cr	opmaskedindjt	ma		Info mod	dal E	dit reco	nd Sho	w Details			
Arusha	М	laize	wrsi_chirp	sgdas_cr	opmaskedond			Into mor	tol E	dit reco	nd Sho	w Details			
Arusha	М	aize	wrsi_chirp	isgdas_cr	opmaskedmar	ni -		Info mor	tal E	dit reco	nd Sha	w Details			
Arusha	М	laize	wrsi_chirg	osgdas_n	omaskndjfma			Info mod	dal Er	dit reco	rd Sho	w Details			
Arusha	М	laize	wrsi_chirp	osgdas_n	omaskond			Info mor	tal E	dit reco	rd Hid	e Details			

Clicking on the "show details" button will provide yield regression statistics for the location and given crop. A statistically significant model will typically have p-value lower than 0.05. However, equations with higher p-values can still be instructive in providing guidance on potential yield outcomes.

•	crop_id: 8
•	region_code: 48362
•	grid_type: 24
•	start_year: 2001
•	end_year: 2010
•	slope: 0.0409277538203548
•	intercept: -2.19553481734203
•	pvalue: 0.444703006654328
•	rvalue: 0.273382104215111
•	stdem: 0.0509137693838501
•	numobsused: 10
•	region; { "id": 16, "region_name": "Kigoma", "region_code": 48362, "created_at": null, "updated_at": null, "region_level": 1, "parent_code": null }
•	crop: { "id": 8, "crop_name": "Maize", "crop_code": null, "crop_fao_code": null, "crop_description": null }
•	dataset: { "id": 24. "gridtype_name": "wrsi_chirpsgdas_nomaskndjfma", "gridtype_content": "WRSI NDJFM no mask", "gridtype_purpose": "Crop monitoring", "gridtype_abstract": null, "theme_id": 1, "gridtype_keywords": "WRSI, NDJFMA, unmasked", "gridtype_timeseries": 1,
	"gridtype_lolimit": null, "gridtype_uplimit": null, "gridtype_status": null, "gridtype_citation": null, "gridtype_credit": null, "gridtype_source": 2,
	gnotype_ansource : 5, projection : <520, gnotype_anguage : nun, gnotype_cons : nun, gnotype_comments : nun)

_showDetails: true

Clicking on the "Edit record" allows making changes such as selecting another crop type as well as saving changes for incorporation in regression equation for yield modelling of the selected crop type. It is not advised to change the statistics on the right hand side as these should be calculated automatically in the model development.

Create/Edit Yield Regression			
Choose a region			
	-0.00723611029799192		
Arusha 🗢	1.56988466717405		
	0.277316398650766		
Maize 🗢			
	-0.38104078948574		
wrsi_chirpsgdas_cropmasked	0.00620758941760922		
2001	10		
2010	Save		
	Cancel		

10.2 Estimating yield

Yield can be calculated using regression equations that have already been entered in the database. The system allows yields to be projected for the current year, once the predictor parameter (e.g. WRSI) has been calculated and is available in the database. Based on this approach, is advised to estimate yields after at least 75% of the season has elapsed, or when the crop is late in the flowering stage. Yields for previous years can also be calculated using the same approach, although in this case,

agrometeorological parameters such as WRSI, calculated at the end of the season, can be used. The yield estimation module can be accessed by clicking the "Yield estimator" button. Available yield estimation models are for maize, based on WRSI, although users can develop other models in the manner described above. The user needs to select the crop, season (MAM, NDJFMA or OND), as well as the dekad and year at which the user is calculating a yield estimate. The user can calculate a yield estimate at any dekad during the season for which data is available, assuming that the calculation of the parameter at that dekad is representative of the seasonal crop performance. This assumption is valid for parameters that integrate seasonal performance, such as WRSI, or cumulative NDVI over a specific period, as may be determined by empirical analysis. The database comes with a regression analysis that has been undertaken for maize only, but users can perform analysis for other crops using techniques described in section 7.1.

Crop yield estimation			
Choose a crop	Maize	٥	
Choose a season	NDJFMA	0	
Choose a dekad	MAM NDJFMA		
Choose a year	OND		

When the user has selected the crop type, year, season and dekad, yields are computed automatically based on regression equations, and results are displayed at the bottom of the parameterization section as below. Note that yield estimates calculated from models with high P-values should be treated with caution, as this means the model is not statistically robust. P-values with a value greater than 0.1 are coloured orange to warn the user to treat the resultant yield estimate cautiously. In the example below, Arusha has a yield estimate of 1.03 tons/ha. However with a P-value of 0.28, this estimate should be treated cautiously. Further analysis to develop a more robust model is advisable in such a scenario. Such further analysis can be done by calibrating the WRSI models, or trying other parameters such as NDVI.

Choose a cro	p	Maize			*			
Choose a sea	ison	NDJFM	A		•			
Choose a del	cad	Mar-3			•			
Choose a yea	97	2020						
Region: Trop: Maize								
Region: Crop: Maize								
Region: Crop: Maize Region	0 Crop	0 Slope	0 Intercept	0 P-value	\$ Year	0 X	0 Estimate	
Region: Crop: Maize Region Arusha	0 Crop Maize	\$ Slope -0.0072	Intercept 1.5699	P-value 0.2773	0 Year 2020	0 X 75	Estimate 1.03	
kegion: Crop: Maize Region Arusha Dodoma	0 Crop Maize Maize	Ø Slope -0.0072 -0.0123	Intercept 1.5699 1.8341	 P-value 0,2773 0,4965 	Vear 2020 2020	¢ x 75 99.93	 Estimate 1.03 0.61 	
tegion: rop: Maize Region Arusha Dodoma Iringa	0 Crop Maize Maize Maize	\$ Slope -0.0072 -0.0123 0.0302	 Intercept 1.5699 1.8341 -1.2518 	 P-value 0,2773 0,4965 0,3892 	 Year 2020 2020 2020 	¢ x 75 99.93 99.83	 Estimate 1.03 0.61 1.76 	
Region: Crop: Maize Region Arusha Dodoma Iringa Kigoma	© Crop Maize Maize Maize Maize	 \$ Slope -0.0072 -0.0123 0.0302 0.0715 	 Intercept 1.5699 1.8341 -1.2518 -5.3262 	 P-value 0.2773 0.4965 0.3892 0.5954 	 Year 2020 2020 2020 2020 2020 	 x 75 99.93 99.83 99.39 	 Estimate 1.03 0.61 1.76 1.78 	

11. Reference functions

A number of reference functions can be accessed through the In-situ data > Reference button on the menu bar.

TM	Agrometed Maps - Graph	orological Dat 15 • In-situ Data •	tabase Manage documents + Crop models
Documents	Agro-meteorological Datal	View Data Data Entry	
Agromet bulletins Forecasts	٧.	References	TMA Agrometeorological

The reference functions include those for Stations, Meteorological Parameters, Crop Stages, Grid Types, and Grid Paths.

Етм	Agrometeorological Maps + Graphs + In-attu D	I Database Inita + Manage documents + Crop models
Documents Agromet bulletins	Database References	
Forecasts	Stations View	Meteorological Parameters
	Grid Types	Grid Paths
	Crop Stages	

Each of the references are described in the following section.

11.1 Stations

Clicking on the Stations View button presents a list of all the stations available in the database. The list shows the station name, latitude and longitude, as well as buttons for viewing the station or editing the station

Meteorologic	al Stations			
Add new station				
Station name	Longitude	Latitude	View	Edit
Arusha	36.63	-3.37	View station	Edit station
Bukoba	31.82	-1.33	View station	Edit station
Dodoma	35.77	-6.17	View station	Edit station
Hombolo	35.95	-5.9	View station	Editistation
lgeri	34.67	-9.67	View station	Edit station
llonga	37.03	-6.76	View station	Editistation
Iringa	35.77	-7.63	View station	Edit station

In this section of the stations management interface, the user can edit the station information such as name of the station, latitude, longitude, altitude, type of station, and the region the station is located in. A station is edited by clicking the "Edit station" button in front of the station's name.

Users can also add new stations to the database by clicking the "Add new station" button, and then specifying all the station's characteristics.

11.2 Meteorological Parameters

The station parameters menu item allows the user to display and edit available meteorological parameters, as well as specify new meteorological parameters:

Station Pa	aramete	ers				
New station parameter						
Parameter name	Parameter code	Units	Data type	Purpose	Actions	
Observed Rainfall	A/R	mm	decimal		Show	Edit
Maximum Temperature	TMAX	deg	decimal		Show	Edit.
Minimum Temperature	TMIN	deg	decimal		Show	Edit
Evaporation	EVAP	mm	decimal		Show	Edit
Potential Evapotranspiration	PET	mm	decimal		Show	Edit
Sunshine	S/5	hours	decimal		Show	Edit
Radiation	RADIR				Show	Edit
Grass Minimum Temperature	GSS	deg	decimal		Show	Edit
Soil Temperature	SOIL TEMP	deg	decimal		Show	Edit

The system shows the name, code, units, minimum and maximum permissible values, priority and data type of each meteorological parameter. Click the "Edit" button to change any of these values. The minimum and maximum values permit some quality

Add a Station	
Parameter Parameter name:	
Parameter code:	
Units;	
Data type:	
text	
Purpose	
Parameter description:	
Submit	

control during data entry, as any values entered that are outside the minimum and maximum values will be rejected by the database.

The priority determines the order in which the station parameters are displayed when viewing data. The higher priority items are displayed first

Click on "New Station Parameter" to specify a new station parameter:

Click "Submit" when all the details of the new parameter have been added.

11.3 Grid Type and Path

The Grid Types and Grid Paths menu items allow the user to view the settings that are used for managing the display of gridded agrometeorological datasets. New grid types and grid paths can be added when new gridded datasets have been incorporated into the database. Typically users are not expected to use these particular functions unless a new gridded dataset is being incorporated to the database, for which additional configuration is required on the operating system.

The grid types views is shown below

Grid types				
Create new grid ty	pe			
RFE_OnsetSmm30 View grid type	ond			
CHIRPS_MAM_cro View grid type	pmasked_asap_pctra	ank_pctin0_20		
CHIRPS_NDJFMA_ View.grid.type	cropmasked_asap_p	ctrank_pctin0_20		
CHIRPS_OND_cro	omasked_asap_pctra	ink_pctin0_20		

The grid Paths view is shown below.

Grid pa	aths				
New grid path					
Grid type	Data class	parameter	Accumulation	Value type	Folder path
CHIRPS Rainfall	processed	rainfall	dekad	actual	AgrometDB/data/taster/processed/tainfall/CHIRPS/1d
CHIRPS Rainfall	climatology	rainfall	dekad	mean	AgrometDBktata/raster/climatology/mean/rainfall/CHI
eMODISNDVI	processed	NDVI	dekad	ectual	AgrometDB/data/aster/processed/NDVI/emodis/1dek
eMODISNDVI	climatology	NDVI	dekad	mean	AgrometDB/data/raster/climatology/mean/NDVI/emod

11.4 Crop stages

The name and number (chronologically, from first to last) of each phenological stage for each crop in the database is displayed when the user clicks the "Crop stages" submenu. Click edit to edit any of these values. New crop stages can also be added.

Crop	stages		
New crop stage	stage number	stage name	Actions
Beans	1	emergence	Show. Edit
Beans	2	budding	Show
Beans	3	flowering	Show
Beans	4	ripeness	Show
Cashew	1	appearance of new shoots	Show
Cashew	2	budding	Show
Cashew	3	flowering	Show
Cashew	4	appearance of nuts	

12. User administration

The administrator can manage users with access to the database by adding new users, removing users and changing a user's privileges (roles). This facility is accessed by clicking the *Admin* > *Users* menu path on the main menu. This menu item is only available to users logged on as Admin.

ТМА	Agrometeorological Database	sces = Admin = A
		Users

To add a new user, click the "Add New User" button at the top-left of the screen.

Jsen	£			
#	Name	Email	Roles	Actions
6	agrometauthor	author1@tzmeteo.com	author	Edit Delete
7	Agromet Editor	agrometuser@meteo.go.tz	editor	Edit Delete
16	Agromet Admin	agromet@meteo.go.tz	admin	Edit Delete

On the following screen, specify the name, email address, password and primary user role of the new user, and then click the "Register" button.

Conductor of restant startes and rest	Maps - Graphs - Brand Day	a • Manage documents • Crop mones Adron
Documents	Add new user	
Forecasts	Name	Petra Moyes
	E-Mail Address	petra@agromet.com
	Password	12345abc
	User role	meteorology viewer 🛩
		Register

During setup, a user can only be assigned a single role, but if multiple roles are required, the administrator can edit the user's roles and assign multiple roles. To edit a user's roles, click the Edit button next to the user's name on the Administration panel.

In editing the user, the Administrator can assign different roles to the user which will allow the user access to different parts of the database. Some roles allow a user to only view certain parts of the database, other roles allow the user to publish documents (authors), yet other roles allow users to add new data (editors), and the administrator role allows a user to have full access to the database.

Agron	neteorological Dat	abase		
	Graphs * In-site Data *		Crop models	
	Edit user Petra Moyes			
	🗆 admin			
	author			
	editor			
	🗆 user			
	agromet_author			
	forecast_author			
	agric_editor			
	viewer			
	met_viewer			
	agric_viewer			
	Update			

13. Conclusion

The TMA agrometeorological database facilitates the provision of a wide range of data and reports to stakeholders in agriculture, food security monitoring, research and related fields. The database is a secure facility as user access control is implemented for viewing and updating station data. At the same time, the database facilitates public utility by providing open access to public datasets such as already available via internet from various satellite imagery data producers, but customized for Tanzania. The platform contains a spectrum of useful agrometeorological data and analysis ranging from meteorological data to yield estimates. In order to match requirements of different users, the database also provides different definitions for key agrometeorological parameters as options. The platform is also a good disaster management tool as the home page containing drought hazard map. The database is flexible, with the facility for TMA to include other datasets and analysis as they specify additional needs. The database is expandable to allow the addition of more and new datasets, both station data and gridded datasets. Further refinement and new functions can be made to the database over time to improve its functionality as user needs of TMA and its agrometeorological stakeholders evolve.

14. Glossary

CHIRPS: A near-global, satellite-based rainfall dataset that combines infrared satellite data with station data, and is produced at a monthly time period, with datasets available for daily through monthly time-steps. CHIRPS is an acronym for Climate Hazards Infrared Precipitation with Stations, and is produced by Climate Hazards Group at University of California Santa Barbara

Crop yield regressions: Crop yield regressions represent the statistical relationship between historical crop yields and predictive parameter such as WRSI, NDVI or rainfall. In the Agromet Database, these relationships are established as a linear regression that estimates the equation of the best fit line that matches WRSI (or other suitable agrometeorological parameters) and crop yield. In this way, crop yields can be estimated if the value of the predictive agrometeorological parameter is known.

CSV: Comma-separated values. A text format file that represents data rows and columns separated by commas. CSV files can be exported from or imported into Excel or other spreadsheet programs, thus facilitating data sharing among different applications. Some of the datasets from the TMA agrometeorology database are exported in CSV format and can be imported into Excel for further analysis

eMODIS : eMODIS data is a specially processed format of Normalized Difference Vegetation Index (NDVI) data developed by the United States Geological Survey (USGS) using MODIS satellite data. The processing done by USGS reduces the effects of clouds on NDVI using temporal smoothing. MODIS, the Moderate Resolution Imaging Spectrometer, is a satellite sensor that views the entire earth's surface every one to two days, capturing images that are useful for the earth's land, oceans and atmosphere

FAO : Food and Agriculture Organization of the United Nations.

FEWS NET: Famine Early Warning System Network. A project of the United States Agency for International Development (USAID) that focuses of producing early warning information pertaining to food security. As part of its processes for early warning analysis, FEWS NET produces many datasets that are useful for agrometeorological analysis.

FLDAS: FEWS NET Land Data Assimilation System. A customized version of the National Aeronautics and Space Administration's (NASA) Land Information System that specifically deals with physical land-hydrological datasets and simulation models that can support food security analysis.

GIS: Geographic Information System. A system designed to capture, archive, manage, analyze and display geographic data and its attributes. GIS software are specifically designed to facilitate GIS analysis and can be used to further analyze data that is exported from the TMA Agrometeorological Database.

MAM: March-April-May period. This covers the *Masika* season.

NDJFMA: The November to April period (November-December-January-February-March-April). It is often referred to as the unimodal or *Msimu* season in Tanzania.

NOAA : National Oceanic and Atmospheric Administration is a United States government agency that, among other things, provides meteorological services for the United States.

Noah Land Surface Model: Land surface models are simulations or models that calculate the exchange of energy (including heat) and water between land surfaces, water surfaces and the atmosphere.

NDVI : Normalized Difference Vegetation Index. A satellite derived index that depicts the health and quantity of green (photosynthetic) vegetation in an area. Higher NDVI values are synonymous with higher density or better health of vegetation.

OND : October-November-December period. This covers the Vuli season.

Percentiles (e.g. 20th percentile): A percentile is a statistical value indicating the percentage of all samples in a population that fall below that specific percentile value. For example, if the 20th percentile for Oct-to-Dec rainfall in a particular location is 150mm, then 20% of all Oct-to-Dec rainfall totals made historically for that dataset will be equal observations made historically for that dataset will equal to or less than 150mm.

PNG : A file format that is used to show graphics and can depict items of interest such as graphs and maps in a format that can be imported reports and presentations.

Representation of change from averages : Difference from average and percent of average calculations. Agrometeorological parameters such as rainfall, NDVI and WRSI are often represented as anomalies in order to enable users to observe the extent to which current conditions differ from average conditions, and whether this is a negative or positive change. There are typically two common ways of representing this change: (1) A difference from average, in which the actual value for the time period being analyzed has the long term average for the same time period subtracted from it and (2) a percent of average, in which the actual value for the time period being analyzed is expressed as a percentage of the long term average for the same time period being analyzed is expressed as a percentage of the long term average for the same time period being analyzed is expressed as a percentage of the long term average for the same time period being analyzed is expressed as a percentage of the long term average for the same time period being analyzed is expressed as a percentage of the long term average for the same time period being analyzed is expressed as a percentage of the long term average for the same time period.

RFE 2.0 : Rainfall estimates version 2.0, a satellite rainfall estimate covering Africa, produced by the National Oceanic and Atmospheric Administration (NOAA), using a combination of satellite images and station data.

U.S. Drought Monitor: The United States Drought Monitor (USDM) is a weeklyproduced drought map showing areas of the United affected by varying severities of drought. The map is produced by the US. National Drought Mitigation Centre, NOAA and the U.S. Department of Agriculture, using inputs from several indices as well as expert interpretation by professionals and reports of impacts by local observers in the affected areas. Part of the input on classification of drought is based on use of percentiles, however, human intervention is and interpretation is also used. More information is available at https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx

WMS: Web Map Service (WMS) is a protocol for sharing georeferenced maps on the internet, served by a web server where the maps reside. WMS was developed by the

Open Geospatial Consortium. The Agromet Database uses the WMS protocol to display the maps of agrometeorological parameters that it archives.

WRSI : Water Requirements Satisfaction Index. An index that indicates the extent to which crops have received the water that they required throughout the growing season on a cumulative basis. The index is calculated from a soil water balance model that uses rainfall, evapotranspiration, soil water holding capacity, crop type, crop cycle length and planting dates.

Z-score : A statistical parameter in which data is transformed into a standard normal distribution, with an average of 0 and a standard deviation on 1. Z-scores are sometimes referred to as standardized values.